Gravitational lensing in modified Newtonian dynamics

نویسنده

  • Daniel J. Mortlock
چکیده

Modified Newtonian dynamics (MOND) is an alternative theory of gravity that aims to explain large-scale dynamics without recourse to any form of dark matter. However the theory is incomplete, lacking a relativistic counterpart, and so makes no definite predictions about gravitational lensing. The most obvious form that MONDian lensing might take is that photons experience twice the deflection of massive particles moving at the speed of light, as in general relativity (GR). In such a theory there is no general thin-lens approximation (although one can be made for spherically-symmetric deflectors), but the three-dimensional acceleration of photons is in the same direction as the relativistic acceleration would be. In regimes where the deflector can reasonably be approximated as a single point-mass (specifically low-optical depth microlensing and weak galaxy-galaxy lensing), this naive formulation is consistent with observations. Forthcoming galaxy-galaxy lensing data and the possibility of cosmological microlensing have the potential to distinguish unambiguously between GR and MOND. Some tests can also be performed with extended deflectors, for example by using surface brightness measurements of lens galaxies to model quasar lenses, although the breakdown of the thin-lens approximation allows an extra degree of freedom. Nonetheless, it seems unlikely that simple ellipsoidal galaxies can explain both constraints. Further, the low-density universe implied by MOND must be completely dominated by the cosmological constant (to fit microwave background observations), and such models are at odds with the low frequency of quasar lenses. These conflicts might be resolved by a fully consistent relativistic extension to MOND; the alternative is that MOND is not an accurate description of the universe.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gravitational lensing and modified Newtonian dynamics

Gravitational lensing is most often used as a tool to investigate the distribution of (dark) matter in the universe, but, if the mass distribution is known a priori, it becomes, at least in principle, a powerful probe of gravity itself. Lensing observations are a more powerful tool than dynamical measurements because they allow measurements of the gravitational field far away from visible matte...

متن کامل

Necessity of dark matter in modified Newtonian dynamics within galactic scales.

To test modified Newtonian dynamics (MOND) on galactic scales, we study six strong gravitational lensing early-type galaxies from the CASTLES sample. Comparing the total mass (from lensing) with the stellar mass content (from a comparison of photometry and stellar population synthesis), we conclude that strong gravitational lensing on galactic scales requires a significant amount of dark matter...

متن کامل

Probing the dark matter issue in f(R)-gravity via gravitational lensing

For a general class of analytic f(R)-gravity theories, we discuss the weak field limit in view of gravitational lensing. Though an additional Yukawa term in the gravitational potential modifies dynamics with respect to the standard Newtonian limit of General Relativity, the motion of massless particles results unaffected thanks to suitable cancellations in the post-Newtonian limit. Thus, all th...

متن کامل

Weak Lensing of Galaxy Clusters in Modified Newtonian Dynamics

We study weak gravitational lensing of galaxy clusters in terms of the MOND (modified Newtonian dynamics) theory. We calculate shears and convergences of background galaxies for three clusters (A1689, CL 0024+1654, and CL 1358+6245) and the mean profile of 42 SDSS (Sloan Digital Sky Survey) clusters and compare them with observational data. The mass profile is modeled as a sum of X-ray gas, gal...

متن کامل

Gravitational Lensing from Hamiltonian Dynamics

The deflection of light by massive bodies is an old problem having few pedagogical treat­ ments. The full machinery of general relativity seems like a sledge hammer when applied to weak gravitational fields. On the other hand, photons are relativistic particles and their propagation over cosmological distances demands more than Newtonian dynamics. In fact, for weak gravitational fields or for s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001